Slow Luminescence Emission from Polymers with a Hyperbolic Decay Law. A Survey of Commercial Materials With an Apparatus of Wide Aperture

G. D. MENDENHALL and H. K. AGARWAL, Department of Chemistry and Chemical Engineering, Michigan Technological University, Houghton, Michigan 49931

Synopsis

A survey of 98 commercial polymers with an apparatus responding to a sample area of 20 cm² revealed luminescence in about a third of them with a characteristic, hyperbolic decay extending over several minutes after brief irradiation with an incandescent source. The time dependence of the intensity was described well by the Debye–Edwards equation, of the form $I = At^{-m}$, with m between 0.67 and 1.17 except for polyvinylcarbazole, with m = 1.76. In a few cases studied in more detail, the emission could be stimulated by wavelengths extending into the visible region, showed a negligible temperature dependence (6-40° C), and was little affected by removal of oxygen or water from the atmosphere around the samples. The source of the emission is ascribed to charge recombination of photoejected electrons from chromophores in the polymer structure or (in most cases) present as adventitious impurities which were not extractable in two cases. Nylon 6, which showed little emission alone, gave well-defined hyperbolic curves after heating in air or after addition of the fluorescent dye Benzoxanthene Yellow H2495.

INTRODUCTION

Some time ago one of us¹ pointed out that weak light emission, stimulated by an incandescent source, was observed on a time scale of minutes from a variety of organic materials and could be fitted to an expression $1/I \equiv dt/dhv$ = kt for t > 0, corresponding to the Debye-Edwards equation² with m = 1. The parameters describing the decay have been empirically correlated in unpublished studies carried out by one of us (G. D. M.) to the composition, processing variables (e.g., degree of cure), age, or state of deterioration of edible or fabricated materials. Since those studies were largely proprietary and involved complicated systems, we have undertaken a survey of singlecomponent polymers in order to establish the scope of the luminescence. In addition to empirical applications, the nonexponential emission is important because it will contribute an apparent background signal to the exponential luminescence decay that is usually sought in polymers at much shorter observation times. A third interest in the phenomenon arises from its possible association with single electron transfer processes leading to polymer oxidation.³

We have used the term charge recombination luminescence to describe the emission by analogy to a number of other studies which have shown that a power function describes phenomena associated with diffusive electron-cation

Journal of Applied Polymer Science, Vol. 33, 1259-1274 (1987)

^{© 1987} John Wiley & Sons, Inc.

recombination⁴⁻⁸:

$$C \xrightarrow{\mu\nu} C^* \to C^{*+} + e^- \tag{1}$$

$$C^{*+} + e^{-} \xrightarrow{\text{slow}} C^* \to h\nu^1$$
 (2)

where C = chromophore and $C^* =$ electronically excited C. We prefer the term Debye-Edwards luminescence (DEL) to describe the curves, since these workers were among the first to describe the hyperbolic decay curves in terms of electron recombination.

EXPERIMENTAL

The apparatus (Fig. 1) was a very simple device which allowed one to irradiate a thin layer of polymer with a conventional, 100 W incandescent light. A 1 cm layer of water in a Pyrex dish absorbed a large portion of the IR emission, and direct measurement of the sample surface with a thermocouple showed that the transmitted photons of all wavelengths produced no significant temperature rise. An irradiation time of 10.0 s was found to be sufficient to give a photostationary steady state. Following the irradiation, the sample was manually slid into a light-tight chamber under a photomultiplier tube-housing and the decay recorded for several minutes. This procedure gave good reproducibility ($m \pm 0.05$, ln $A \pm 0.2$), and the irradiating source was more stable and less damaging to samples than conventional laboratory lamps of higher power.

Data were collected in the photon-counting mode with a computer system described earlier.⁹ Parameters for the Debye–Edwards law were made by optimizing the *F*-statistic of the least-squares analysis of log–log plots by subtracting out a constant background counting rate which was usually small in comparison to the recombination luminescence. The values of $\ln A$ (intercept) and m (-1*slope) so obtained are given in Table I. The magnitude of A so evaluated depends on the sampling time interval and other factors (see Appendix).

For the experiments at 6° C the entire apparatus was moved into a cold room at that temperature. For experiments at 40° C, two horizontal 150 W heaters were attached to the sides of sliding device, and the input voltage was adjusted to give the desired temperature.

Polymer samples were taken from a collection available from SP2, Inc. (Kit no. 205) and examined initially without further treatment. A few samples from other sources are indicated parenthetically or in footnotes in Table I. Polyvinylcarbazole (PVK) was purchased from Polysciences, Inc. All samples were in the form of powders or granules. A sample of nylon 6 (4.9 g) was allowed to stand in a methanol solution $5.95 \times 10^{-6}M$ in Benzoxanthene Yellow H2495 (Hoechst 2495, from Aldrich Chemical Co.), the solvent was decanted, and the yellow polymer was dried. The concentration of the dye in the polymer was calculated as 7.9×10^{-4} % from the change in optical density of the methanol solution.

									2			
						Varia	bles fit	ted to eq	uation log	$(I \cdot \Delta t) =$	$\log A - m$	$\operatorname{og}(t/\Delta t)$
		Time int	erval								Dhatan	ما مد ممد مرا
		(s)		Background							LIOUOUS	nencen
	Polymer	From	To	photons	Δ <i>t</i> (s)	m	pm ^a	ln A	$p \ln A^{a}$	r ²	T_{30}	T_{300}
	Alginic acid,											
	sodium salt	10	009	100	ŋ	0.924	0.02	11.323	0.006	0.9956	3160	375
બં	Ethyl cellulose	21	009	100	ო	0.823	0.1	9.234	0.02	0.9503	400	75
.	Hydroxybutyl (8%)											
	methyl (20%) cellulose	35	009	125	5	0.814	0.05	10.732	0.01	0.9626	2130	325
4.	Hydroxypropyl Cellulose	45	009	100	5	0.903	0.05	11.036	0.01	0.9616	2460	310
5.	Hydroxypropyl (10%)											
	methyl (30%) cellulose	55	009	100	5	0.781	0.05	11.311	600.0	0.9792	4030	670
.	Methyl cellulose	65	009	100	5	0.846	0.04	11.396	0.00	0.9813	3900	560
	Nylon 6/6	20	600	100	5	1.021	0.08	10.189	0.02	0.9865	850	80
ø	Nylon 6/9	20	600	125	5	0.942	0.06	10.413	0.015	0.9906	1230	140
<u>ю</u>	Nylon 6/10	40	009	100	ŝ	1.015	0.04	11.087	0.01	0.9911	2120	180
10.	Nylon 6/12	20	009	100	5	0.772	0.04	10.041	0.01	0.988	780	195
11.	Nylon 6/T	20	009	75	ō	0.951	0.13	8.926	0.03	0.9515	270	30
12.	Nylon 11	40	009	110	2	0.973	0.04	11.297	0.00	0.9941	2820	300
13.	Nylon 12	35	009	75	5	0.943	0.04	11.799	0.00	0.9926	4900	560
14.	Phenoxy resin ^b	20	009	75	5	0.903	0.04	10.286	0.01	0.9881	1160	145
15a.	Polyamide resin ^c	8	009	1000	ō	0.733	0.05	11.968	0.01	0.9971	8500	1560
15b.	Polyamide resin	55	009	300	Ð	0.682	0.02	11.892	0.005	0.9961	8500	1560
16a.	Polycaprolactone	55	009	100	0	1.059	0.013	13.982	0.003	0.9976	35400	3080
16b.	Polycaprolactone	55	600	700	ŝ	1.098	0.03	14.189	0.007	0.9987	35400	3080

TABLE I Charge-Recombination Parameters for Polymers SLOW LUMINESCENCE EMISSION

1261

page.)
orevious
m the J
1 froi
(Continued
TABLE I

(6) Background Polymer From To photons Δt (s) m^* In A p In A* r^2 T_{30} Photons detect 17. Poly(<i>p</i> -phenylene ether 12 120 40 1 0.969 0.03 12.066 0.007 0.9882 6060 18. Poly(phenylene sulfide) 14 240 60 2 0.981 0.02 12.288 0.006 0.9925 7470 2 2 2 167 0.03 12.368 0.006 0.9994 3340 2 2 2 0.981 0.001 0.9994 3340 2 2 0.981 0.005 0.006 0.9994 3340 2 2 0.991 2 2 0.991 2 2 0.991 2 2 0.991 2 2 0.991 2 2 0.991 2 2 0.991 2 2 0.991 2 2 2 2 0.991 2			l'ime in	terval					i				
Polymer From To photons $\Delta t(s)$ m m <thm< th=""> m <thm< th=""> <thm< th=""></thm<></thm<></thm<>		ſ	(s)		Background							Photons	detected
I7.Poly(p-phenylene ether sulphone)18.Poly(p-phenylene ether sulphone)19.Poly(p-phenylene ether sulphone)18.Poly(phenylene ether sulphone)12120401 0.969 0.03 12.006 0.0925 7470 19.Polysulftone resind 20.24240503 1.167 0.03 12.208 0.006 0.9925 7470 19.Polysulftone resind 20.24240503 1.167 0.03 12.368 0.006 0.9994 3340 20.Vinylidene chloride/(20%)4050503 0.8716 0.02 12.268 0.006 0.9991 4410 21.Poly(V-vinylpyrridino)15 600 565 0.876 0.02 0.9612 190 22.Poly(V-vinylpyrridino)15 600 503 0.033 10.02 10.267 0.9719 500 23.Polytyrrene (emulsion)15 600 503 0.981 0.9912 2940 24.Soluble starch15 600 505 0.683 0.006 0.9271 120 25.Poly(v-vinylpyrridino)15 600 50 0.021 0.027 0.9252 120 24.Soluble starch15 0.006 0.077 0.9269 120 25.Poly(v-vinylpyrridino)15 0.002 0.001 0.9267 120 26.Soluble starch18 <th></th> <th>Polymer</th> <th>From</th> <th>To</th> <th>photons</th> <th>Δt (s)</th> <th>m</th> <th>pm^{a}</th> <th>ln A</th> <th>$p \ln A^{a}$</th> <th>r²</th> <th>T_{30}</th> <th>T_{300}</th>		Polymer	From	To	photons	Δt (s)	m	pm^{a}	ln A	$p \ln A^{a}$	r ²	T_{30}	T_{300}
sulphone)12120401 0.969 0.03 12.006 0.9925 7470 18. Poly(phenylene sulfide)14240 60 2 0.981 0.02 12.268 0.006 0.9925 7470 19. Polysulfone resin ^d 24240 50 3 1.167 0.03 12.268 0.006 0.9925 7470 20. Vinylidene chloride/(20%)40 60 2 0.981 0.02 12.288 0.006 0.9925 7470 21. Poly(N-vinylpyrrolidone)12 360 50 5 0.875 0.06 0.9921 4110 23. Poly($4-vinylpyrrolidone$)15 3600 256 3 0.931 0.033 1.9319 500 24. Soluble starch15 400 30 5 0.08 0.0914 0.09719 500 25. Poly($4-vinylpyrrolidone$)15 3600 256 3 0.9381 0.007 0.9893 2840 26. Albumin, egg powder18 360 10 3 0.038 0.009 0.9967 140 26. Albumin, egg powder18 360 50 3 0.931 0.9392 1270 27. Soluble starch18 360 50 0.06 0.02 0.9963 250 26. Albumin, egg powder18 360 0.02 0.06 0.02 0.9963 250 27. Soluble starch18 360 0.02 0.02 0.9963 250 <td< td=""><td>17.</td><td>Poly(<i>p</i>-phenylene ether</td><td></td><td></td><td>1</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	17.	Poly(<i>p</i> -phenylene ether			1								
18. Poly(phenylene sulfide) 14 240 60 2 0.981 0.02 12.368 0.006 0.9925 7470 19. Polysulfone resin ^d 24 240 50 3 1.167 0.03 12.368 0.006 0.9994 3340 20. Vinylidene chloride/(20%) 40 600 50 3 0.165 0.03 11.368 0.006 0.9994 3340 21. Poly(N-vinylpyrrolidone) 12 360 50 3 0.852 0.06 9.9991 2440 22. Poly(N-vinylpyrrolidone) 12 360 50 3 0.851 0.035 0.9991 2440 23. Poly(N-vinylpyrrolidone) 15 3600 50 5 0.893 0.006 0.9991 2440 24. Soluble starch 15 3600 50 5 0.863 0.006 0.9991 2840 25. Poly(a-methylstyrene) 18 360 0.02		sulphone)	12	120	40	1	0.969	0.03	12.006	0.007	0.9882	6060	650
19. Polysulfone resind 24 240 50 3 1.167 0.03 12.368 0.008 0.9994 3340 20. Vinylidene chloride/(20%) acrylonitrile 40 600 50 5 0.876 0.02 11.568 0.006 0.9901 4410 21. Poly(N-vinylpyrrolidone) 12 360 50 3 0.352 0.06 9.289 0.014 0.9719 500 22. Poly(V-vinylpyrrolidone) 15 3600 25 3 0.381 11.312 0.006 0.9991 2840 23. Poly(4-vinylpyrrolidone) 15 3600 25 3 0.383 11.312 0.006 0.9991 2840 24. Soluble starch 15 600 50 5 0.88 0.10 7.594 0.007 0.9698 200 25. Poly(a-methylistyrene 18 360 50 0.03 10.33 11.312 0.006 0.9949 250 <td>18.</td> <td>Poly(phenylene sulfide)</td> <td>14</td> <td>240</td> <td>69</td> <td>5</td> <td>0.981</td> <td>0.02</td> <td>12.268</td> <td>0.006</td> <td>0.9925</td> <td>7470</td> <td>800</td>	18.	Poly(phenylene sulfide)	14	240	69	5	0.981	0.02	12.268	0.006	0.9925	7470	800
20. Vinylidene chloride/(20%)20. Vinylidene chloride/(20%)21. Poly(N-vinylpyrrolidone)123605050.8520.060.9901441021. Poly(N-vinylpyrrolidone)123605030.8520.060.9991284022. Poly(4-vinylpyrrolidone)1536002530.8510.03311.3120.0060.9991284023. Polystyrene (emulsion)156005050.6830.0838.0960.020.966219024. Soluble starch154003050.680.107.5940.0270.822512025. Poly(a-methylstyrene)213601030.5610.0121.839920002966712726. Albumin, egg powder183605050.0680.0127.5940.0270.926714026. Albumin, egg powder183605050.0680.030.9310.33990.0110.926714027. Soluble starch183605050.7710.127.8920.030.934925028. Arach potato powder183605050.0680.030.9510.010.925714029. Starch botato powder25600702660.030.010.9250.030.951322030. Cont starch heat powder266007050.780.079.9669500 <td>19.</td> <td>Polysulfone resin^d</td> <td>24</td> <td>240</td> <td>50</td> <td>ი</td> <td>1.167</td> <td>0.03</td> <td>12.368</td> <td>0.008</td> <td>0.9994</td> <td>3340</td> <td>370</td>	19.	Polysulfone resin ^d	24	240	50	ი	1.167	0.03	12.368	0.008	0.9994	3340	370
acrylonitrile40600505 0.876 0.02 11.568 0.006 0.9901 4410 21.Poly(N-vinylpyridine)153600253 0.8812 0.036 0.9901 4410 22.Poly(4-vinylpyridine)153600253 0.8812 0.036 0.9991 2840 23.Polystyrene (emulsion)15600505 0.683 0.036 0.902 19062 190 24.Soluble starch15400305 0.022 0.006 0.9967 120 25.Poly(a-methylstyrene)21 360 10 3 0.602 0.007 0.9255 120 25.Poly(a-methylstyrene)21 360 10 3 0.921 0.007 0.9267 140 26.Albumin, egg powder18 360 50 3 0.9321 0.011 0.9267 140 27.Soluble starch18 360 50 3 0.9321 0.011 0.9267 140 28.Starch potato powder15 600 50 5 0.713 0.12 7.892 0.011 0.9267 140 29.Starch wheat powder15 600 30 5 0.712 7.892 0.011 0.9267 140 30.Starch wheat powder25 600 26 0.07 0.92823 600 31.Corn starch (Argo)25 600 <	20.	Vinylidene chloride/(20%)											
21.Poly(N-vinylpyrrolidone)12360503 0.852 0.06 9.289 0.014 0.9719 50022.Poly(4-vinylpyridine)153600253 0.981 0.033 11.312 0.006 0.9891 2840 23.Polystyrene (emulsion)15600505 0.683 0.10 7.594 0.027 0.9062 190 24.Soluble starch15400305 0.02 0.007 0.9255 120 25.Poly(a-methylstyrene)21 360 10 3 0.60 0.02 0.007 0.9267 1270 26.Albumin, egg powder18 360 50 3 0.9311 0.12 7.892 0.01 1270 27.Soluble starch18 360 50 50 3 0.951 0.12 7.892 0.01 0.9267 140 26.Albumin, egg powder18 360 50 50 0.12 7.892 0.01 0.9267 140 27.Soluble starch18 360 50 30 50 0.07 0.9267 140 28.Starch wheat powder15 600 50 50 0.07 0.9267 140 29.Starch wheat powder25 600 25 5 0.72 0.9269 500 30.Starch wheat powder25 600 26 0.07 0.92823 600 <t< td=""><td></td><td>acrylonitrile</td><td>40</td><td>009</td><td>50</td><td>ŋ.</td><td>0.876</td><td>0.02</td><td>11.568</td><td>0.006</td><td>0.9901</td><td>4410</td><td>009</td></t<>		acrylonitrile	40	009	50	ŋ.	0.876	0.02	11.568	0.006	0.9901	4410	009
22. $Poly(4-vinylpyridine)$ 1536002530.9810.03311.3120.0060.9891284023. $Polystyrene (emulsion)$ 156005050.6930.0838.0960.020.906219024.Soluble starch154003050.680.107.5940.0270.822512025.Poly(a-methylstyrene)213601030.600.00210.0690.0070.9663200026.Albumin, egg powder183604030.93210.138.7920.030.34925027.Soluble starch18360505030.9510.127.8920.0114028.Starch potato powder15600505030.54825025029.Starch wheat powder156002550.8660.020.9867127029.Starch optato powder156005050.710.127.8920.010.926714020.Starch wheat powder156002550.8660.020.926714030.Starch wheat powder256002550.8860.020.996350031.Corn starch (Argo)25600260.070.92820.030.9941131031.Corn starch (Mrgo)2610010	21.	Poly(N-vinylpyrrolidone)	12	360	50	e	0.852	0.06	9.289	0.014	0.9719	500	70
23.Polystyrene (emulsion)15600505 0.633 0.083 8.096 0.02 0.9062 19024.Soluble starch15400305 0.68 0.10 7.594 0.027 0.8225 12025.Poly(a-methylstyrene)21 360 103 0.60 0.007 0.9662 12026.Albumin, egg powder18 360 403 0.9322 0.009 0.9867 1270 27.Soluble starch18 360 505 0.731 0.12 7.892 0.01 0.9349 250 28.Starch potato powder15 600 505 0.731 0.12 7.892 0.01 0.9267 140 29.Starch wheat powder15 600 305 0.668 0.02 0.9267 140 30.Starch orn powder25 600 26 0.76 0.67 9.548 0.02 0.9267 140 31.Corn starch (Argo)25 600 26 0.07 0.9263 600 500 32.Polycarbonate resin (Dow)10 600 100 5 0.886 0.02 0.969 500 33.Styrene acrylonitrile (Dow)20 600 9.60 0.07 9.382 0.02 0.969 500 34.Styrene maleic 5 0.890 0.01 0.910 0.9913 220 35. <td>22.</td> <td>Poly(4-vinylpyridine)</td> <td>15</td> <td>3600</td> <td>25</td> <td>e</td> <td>0.981</td> <td>0.033</td> <td>11.312</td> <td>0.006</td> <td>0.9891</td> <td>2840</td> <td>300</td>	22.	Poly(4-vinylpyridine)	15	3600	25	e	0.981	0.033	11.312	0.006	0.9891	2840	300
24. Soluble starch 15 400 30 5 0.68 0.10 7.594 0.027 0.8225 120 25. Poly(a-methylstyrene) 21 360 10 3 0.60 0.02 10.069 0.007 0.99867 1270 26. Albumin, egg powder 18 360 40 3 0.9321 0.13 8.792 0.03 0.9967 1270 27. Soluble starch 18 360 50 5 0.731 0.12 7.892 0.01 0.9267 140 28. Starch potato powder 15 600 50 5 0.731 0.12 7.892 0.01 0.9267 140 29. Starch wheat powder 15 600 30 5 0.66 8.03 0.011 0.9215 180 30. Starch wheat powder 15 600 30 5 0.66 9.05 9.03 0.911 0.9215 180 31. Corn starch (Argo) 25 600 30 0.07 9.382 0.02	23.	Polystyrene (emulsion)	15	009	50	5	0.693	0.083	8.096	0.02	0.9062	190	40
25. Poly(a-methylstyrene) 21 360 10 3 0.60 0.02 10.069 0.007 0.9698 2000 26. Albumin, egg powder 18 360 40 3 0.332 0.03 10.389 0.009 0.9867 1270 27. Soluble starch 18 360 50 5 0.731 0.12 7.892 0.01 0.9267 140 28. Starch potato powder 15 600 50 5 0.731 0.12 7.892 0.01 0.9267 140 29. Starch wheat powder 15 600 30 5 0.668 0.07 0.9263 600 30. Starch corn powder 25 600 26 0.66 9.548 0.02 0.9863 500 31. Corn starch (Argo) 25 600 100 5 0.873 0.03 0.9963 500 32. Polycarbonate resin (Dow) 10 600 100 5 0.873 0.03 0.9669 500 34. Styr	24.	Soluble starch	15	400	30	5	0.68	0.10	7.594	0.027	0.8225	120	25
26. Albumin, egg powder 18 360 40 3 0.932 0.03 10.389 0.096 0.9867 1270 27. Soluble starch 18 360 50 5 3 0.951 0.13 8.792 0.03 0.9867 1270 28. Starch potato powder 25 600 50 5 0.731 0.12 7.892 0.01 0.9267 140 29. Starch wheat powder 15 600 30 5 0.668 0.05 9.548 0.01 0.9267 140 30. Starch corn powder 15 600 30 5 0.668 0.05 9.548 0.02 0.9863 500 31. Corn starch (Argo) 25 600 70 5 0.87 0.07 9.382 0.02 0.9669 500 32. Polycarbonate resin (Dow) 10 600 100 5 0.78 0.10 0.9613 220 34. Styrene acrylonitrile (Dow) 20 600 10.38 0.10 0.941 <td< td=""><td>25.</td><td>$\operatorname{Poly}(\alpha\operatorname{-methylstyrene})$</td><td>21</td><td>360</td><td>10</td><td>e</td><td>0.60</td><td>0.02</td><td>10.069</td><td>0.007</td><td>0.9698</td><td>2000</td><td>500</td></td<>	25.	$\operatorname{Poly}(\alpha\operatorname{-methylstyrene})$	21	360	10	e	0.60	0.02	10.069	0.007	0.9698	2000	500
27. Soluble starch 18 360 50 3 0.951 0.13 8.792 0.03 0.349 250 28. Starch potato powder 25 600 50 5 0.731 0.12 7.892 0.01 0.9267 140 29. Starch wheat powder 15 600 30 5 0.6682 0.06 8.039 0.011 0.9315 180 30. Starch corn powder 25 600 25 5 0.866 0.05 9.548 0.02 0.9823 600 31. Corn starch (Argo) 25 600 70 5 0.87 0.07 9.382 0.02 0.9669 500 32. Polycarbonate resin (Dow) 10 600 100 5 0.78 0.10 8.73 0.03 0.9613 220 34. Styrene acrylonitrile (Dow) 20 600 100 5 0.78 0.04 10.38 0.911 0.9913 220 35. Styrene maleic 0.80 10.04 10.38 0.01	26.	Albumin, egg powder	18	360	40	ი	0.932	0.03	10.389	0.00	0.9867	1270	150
28. Starch potato powder 25 600 50 5 0.731 0.12 7.892 0.01 0.9267 140 29. Starch wheat powder 15 600 30 5 0.682 0.06 8.039 0.011 0.9315 180 30. Starch corn powder 25 600 25 5 0.866 0.05 9.548 0.02 0.9823 600 31. Corn starch (Argo) 25 600 70 5 0.87 0.07 9.382 0.02 0.9669 500 32. Polycarbonate resin (Dow) 10 600 100 5 0.78 0.10 8.73 0.03 0.9613 220 34. Styrene acrylonitrile (Dow) 20 600 100 5 0.89 0.04 10.38 0.011 0.9941 1310 35. Styrene maleic anhydride (Dow) 20 600 25 0.75 0.02 8.942 0.0805 265	27.	Soluble starch	18	360	50	e	0.951	0.13	8.792	0.03	0.9349	250	25
29. Starch wheat powder 15 600 30 5 0.682 0.06 8.039 0.011 0.9315 180 30. Starch corn powder 25 600 25 5 0.866 0.05 9.548 0.02 0.9823 600 31. Corn starch (Argo) 25 600 70 5 0.87 0.07 9.382 0.02 0.9669 500 32. Polycarbonate resin (Dow) 10 600 100 5 0.78 0.10 8.73 0.03 0.9613 220 34. Styrene acrylonitrile (Dow) 20 600 100 5 0.89 0.04 10.38 0.011 0.9941 1310 35. Styrene maleic 20 600 25 0.75 0.02 8.942 0.008 0.9905 265	28.	Starch potato powder	25	009	20	5	0.731	0.12	7.892	10.0	0.9267	140	27
30. Starch corn powder 25 600 25 5 0.866 0.05 9.548 0.02 0.9823 600 31. Corn starch (Argo) 25 600 70 5 0.87 0.07 9.382 0.02 0.9669 500 32. Polycarbonate resin (Dow) 10 600 100 5 0.78 0.10 8.73 0.03 0.9613 220 34. Styrene acrylonitrile (Dow) 20 600 100 5 0.89 0.04 10.38 0.911 0.9941 1310 35. Styrene maleic 20 600 25 5 0.75 0.02 8.945 0.09613 220 35. Styrene maleic 20 8.94 10.38 0.011 0.9941 1310 35. anhydride (Dow) 20 600 25 5 0.75 0.02 8.942 0.9905 265	29.	Starch wheat powder	15	009	30	5	0.682	0.06	8.039	0.011	0.9315	180	38
31. Corn starch (Argo) 25 600 70 5 0.87 0.07 9.382 0.02 0.9669 500 32. Polycarbonate resin (Dow) 10 600 100 5 0.78 0.10 8.73 0.03 0.9663 220 34. Styrene acrylonitrile (Dow) 20 600 100 5 0.89 0.04 10.38 0.011 0.9941 1310 35. Styrene maleic 25 0.75 0.02 8.942 0.905 265	30.	Starch corn powder	25	009	25	5	0.866	0.05	9.548	0.02	0.9823	600	80
32. Polycarbonate resin (Dow) 10 600 100 5 0.78 0.10 8.73 0.03 0.9613 220 34. Styrene acrylonitrile (Dow) 20 600 100 5 0.89 0.04 10.38 0.011 0.9941 1310 35. Styrene maleic 20 600 25 5 0.75 0.02 8.942 0.008 0.9805 265	31.	Corn starch (Argo)	25	0 09	70	5	0.87	0.07	9.382	0.02	0.9669	500	68
34. Styrene acrylonitrile (Dow) 20 600 100 5 0.89 0.04 10.38 0.011 0.9941 1310 35. Styrene maleic 35. Styrene maleic 20 600 25 5 0.75 0.02 8.342 0.9805 265	32.	Polycarbonate resin (Dow)	10	009	100	5	0.78	0.10	8.73	0.03	0.9613	220	50
35. Styrene maleic anhydride (Dow) 20 600 25 5 0.75 0.02 8.342 0.008 0.9805 265	34.	Styrene acrylonitrile (Dow)	20	600	100	ŋ	0.89	0.04	10.38	0.011	0.9941	1310	170
anhydride (Dow) 20 600 25 5 0.75 0.02 8.342 0.008 0.9805 265	35.	Styrene maleic											
		anhydride (Dow)	20	600	25	S	0.75	0.02	8.942	0.008	0.9805	265	70

^a Pseudoerrors from evaluation of data from single decay. ^bCopolymer of epichlorohydrin and bisphenol A (2,2-bis-(4-hydroxyphenyl)propane).

°Nylon mixture. ^dCopolymer from 4,4′-dichlorodiphenyl sulfone and bisphenol A.

1262

MENDENHALL AND AGARWAL

Fig. 1. Apparatus for detection of DEL.

An unsuccessful attempt was made to see unpaired spins by brief irradiation of a sample of nylon 11 in a 6 mm ID pyrex tube in the cavity of a Varian E9 electron spin resonance spectrometer. Unfiltered light from a 200 W high-pressure mercury lamp, focused with quartz lenses, was the excitation source for this experiment.

RESULTS

General Characteristics of DEL. The apparatus shown in Figure 1 is extremely simple and unsophisticated, and, in combustion with the high precision of the photon counting capability, it is very useful for characterization of a wide variety of natural and artificial materials. The sliding device is actually unnecessary for many substances, since the generality of the phenomenon was recognized when attempts to measure thermal chemiluminescence in a number of samples were frustrated by a slowly decaying component of the emission, which was traced to stimulation by fluorescent room lights.

About a third of the samples that we studied showed luminescence persisting for minutes after irradiation. The nonexponential nature of the decay is apparent in the curve shapes in Figure 2, in which the optimized fits according to the Debye–Edwards equation are plotted for three representative examples.

There is some ambiguity in the selection of the parameters in Table I due to the presence of a background signal, which is composed of inherent tube noise (usually < 7 cps with a cold tube) and chemiluminescence emission from the polymer. This appeared to be a serious problem only when the DEL was very weak, or when color filters were used to filter the exciting or emitted light. In two cases (Table I, samples 15 and 16) the fit was equally good with background levels ranging over factors of 3 and 6, respectively. In most

Fig. 2. Exemplary plots of DEL from polymers, as photons per 5-s interval vs. time. The fitted curves are drawn through (selected) experimental points.

examples, however, the best parameters led to a very close visual fit of the curve to the data, although systematic deviations were usually still apparent on examination of the residuals.

A list of polymers which did not show long-lived luminescence is given in Table II. In some cases we are able to detect the tail end of short-lived luminescence from these samples, but we were not able to collect sufficient data with this apparatus to distinguish between hyperbolic and exponential decay.

The mean exponential term of those given in Table I was 0.88 ± 0.13 . The calculated counting rates 30 s after the end of the irradiation varied from 120 (soluble starch) to 35,400 (polycaprolactone). Extrapolation to unit times $(I_0 \cong A/\Delta t)$ gave an estimate for the steady state intensities of the DEL during irradiation, which vary over about two orders of magnitude in representative examples (Table III).

The effect of other variables was examined in a few cases. In Table IV, decay parameters are given for a sample of nylon 11 which was examined after successive irradiations in the usual way. Aside from minor systematic trends which may be due to characteristics of the irradiation system, the parameters are very similar.

We also selected four samples of representative polymers for the study of atmospheric dependence (Table V). The decay parameters showed minor differences in ambient air, dry air, or nitrogen.

SLOW LUMINESCENCE EMISSION

TABLE II ow Charge Rees

Polymers Which Die	Not Show Charge-Recombination Luminescence
1. Butyl methacrylate/isobutyl	methacry- 33. Poly(isobutyl methacrylate)
late copolymer	34. Poly(methyl methacrylate)
2. Cellulose acetate	35. Poly(4-methyl-1-pentene), melt index 70
3. Cellulose acetate butyrate	36. Polypropylene isotactic
4. Cellulose propionate	37. Polypropylene, chlorinated
5. Cellulose sulfate, sodium salt	38. Polystyrene
6. Cellulose triacetate	39. Polytetrafluoroethylene
7. Ethylene/(20%) acrylic acid c	opolymer 40. Poly(vinyl acetate)
8. Ethylene/maleic anhydride c	polymer 41. Poly(vinyl alcohol) (88 & 100% hydro-
9. Ethylene/(14, 18, 25, 28, 33, 8	: 40%) vinyl lyzed)
acetate copolymer	42. Poly(vinyl butyral)
10. Methyl vinyl ether/ (50%) ma	eic acid co- 43. Poly(vinyl chloride), inherent viscosity
polymer	1.26
1. Methyl vinyl ether/(50%) m	aleic anhy- 44. Poly(vinyl chloride) (1.8% carboxylated)
dride copolymer	45. Poly(vinyl fluoride)
2. Nylon 6 (polycaprolactam)	46. Poly(vinyl formal)
13. Polyacetal	47. Poly(vinyl fluoride)
14. Polyacrylamide	48. Poly(vinylidene fluoride)
15. Polyacrylamide, carboxyl mo	dified (low 49. Poly(N-vinylpyrrolidone)
carboxyl content)	50. Poly(vinyl stearate)
 Polyacrylamide, carboxyl mo 	dified (high 51. Rubber, chlorinated
carboxyl content)	52. Styrene/(20, 25, & 30%) acrylonitrile
17. Poly(acrylic acid)	copolymer
0 D L /1 L	50 Stemme (alled alashed approximate (5.4

- 53. Styrene/allyl alcohol copolymer (5.4-6.0% hydroxyl)
- 54. Styrene/butadiene copolymer (ABA block, 30% styrene)
- 55. (85%) Styrene/butadiene copolymer
- 56. (14%) Styrene/isoprene ABA block copolymer
- 57. (50%) Styrene/maleic anhydride copolymer
- 58. Vinyl alcohol/(80%) vinyl butyral copolymer
- 59. Vinyl chloride/(2, 10, 13, & 12%) vinyl acetate copolymer
- 60. (83%) vinyl chloride/(13%) vinyl acetate, (1% carboxylated)
- 61. (80%) vinyl chloride/(14%) vinyl acetate/vinyl alcohol terpolymer
- 62. Vinylidene chloride/vinyl chloride copolymer

The sample temperature had little systematic effect on the parameters derived from the curves of DEL obtained from three representative polymers (Table VI). The exponential term m showed less change than the values of A, which displayed slightly larger values at 25°C than at higher or lower temperatures. At lower temperatures, charge-recombination kinetics have been found to be independent of temperature in some cases^{4,5} and to show irreversible changes associated with annealing in others.⁶

Spectral Distribution. Color filters were used in separate, rough experiments to determine the significant wavelengths for excitation and emission. In

	late copolymer	34. Pol
2.	Cellulose acetate	35. Pol
3.	Cellulose acetate butyrate	36. Pol
4.	Cellulose propionate	37. Pol
5.	Cellulose sulfate, sodium salt	38. Pol
6.	Cellulose triacetate	39. Pol

- 7. E
- 8. E
- 9. E 8
- 10. N r
- 11. M d
- 12. N
- 13. P
- 14. P
- 15. P с
- 16. P с
- 17. F
- 18. Poly(1-butene), isotactic
- 19. Poly(1,4-butylene terephthalate)
- 20. Poly(butyl methacrylate)
- 21. Poly(1,4-cyclohexanedimethylene terephthalate)
- 22. Poly(diallyl isophthalate)
- 23. Poly(diallyl phthalate)
- 24. Poly(2,6-dimethyl-p-phenylene oxide)
- 25. Poly(4,4-dipropoxy-2,2-diphenylpropane fumarate)
- 26. Polyethylene high density
- 27. Polyethylene, (25, 36, 42, & 48%) chlorinated
- 28. Polyethylene, chlorosulfonated
- 29. Poly(ethylene oxide)
- 30. Polyethylene, oxidized (acid number 15 mg KOH/g
- 31. Poly(ethylene terephthalate)
- 32. Poly(ethyl methacrylate)

TABLE III

Calculated Initial Charge-Recombination Emission Following Irradiation

Polymer	I (counts/s)
Hydroxypropyl cellulose	12,400
Nylon 11	16,100
Nylon 12	26,600
Phenoxy Resin	5,900
Polycaprolactone	263,200

	Time in (s)	terval)	Background						
Nylon 12	From	То	photons	Δt (s)	m	pm	$\ln A$	$p \ln A$	r^2
After 1st irradiation	20	500	50	5	1.06	0.09	9.62	0.02	0.9709
2nd	20	500	75	5	1.05	0.12	9.56	0.03	0.9565
3rd	20	500	100	5	1.03	0.13	9.54	0.03	0.9743
4th	20	500	100	5	0.98	0.13	9.37	0.03	0.9750
5th	20	500	100	5	0.98	0.13	9.40	0.03	0.9722
After irradiation for 30 seconds	20	500	100	5	1.06	0.08	9.92	0.04	0.9689

TABLE IV Effect of Multiple Irradiations on DEL from Nylon 12

Table VII the exciting wavelengths for nylon 11 are seen to extend well into the visible region. The emitted light (Table VIII) appears to be concentrated between 400 and 490 nm, although there is some uncertainty because the manufacturer's curves for the photomultiplier tube indicate a decline in sensitivity from 20% at 400 nm to about 6.7% at 590 nm. In both types of experiments the effect of the filter should be only a diminution in the value of A from the subsequent data analysis (see appendix). This appears to be the case for the first three examples in Table VIII, but the last two filters removed so much light that there was a great deal of scatter in the data, and the fitted exponential term was anomalously low.

We attempted to extract chromophores from nylon 11 and the polysulfone resin with isopropanol-dichloromethane without success (Table IX). The polysulfone congealed into a hard lump during the extraction process, and was subsequently compression-molded into a sheet which showed DEL parameters virtually identical to those of the original resin.

Polyvinylcarbazole. After the original survey was completed, we became aware of work⁶ on laser-induced excitation in PVK, which gave emission corresponding to a power law over the range 0.05–lms. Unfortunately, it is not possible to calculate the value of the exponential term from the data given in this paper. Since photoconductivity via electron-hole formation is very well established for PVK, we examined a commercial sample in our apparatus and found the DEL to be the most intense by far of any polymer studied, with $\ln A = 17.99 \pm 0.02$ and $m = 1.792 \pm 0.007$ (average of 5 decays). In the previous work,⁶ signal averaging was necessary to obtain sufficient data for analysis. Although the source of the PVK, of course, may have been different

	Effe	ect of Atmospi	here and Humidity on	1 Charge-Recom	oination Lumin	escence from P	olymers		
Dolumor /	Time in (s)	terval	Bodomound		Variab	les fitted to equ	ation $\log(I \cdot \Delta t)$	$= \log A - m \log A$	$g(t/\Delta t)$
atmosphere	From	T _o	photons	Δ <i>t</i> (s)	m	md	ln A	p ln A	r2
				Ethylcellulose					
Air	15	500	50	5	0.792	0.162	7.573	0.043	0.8851
N_2	15	500	50	5	0.828	0.240	7.161	0.064	0.7739
$N_2 + 20 \text{ torr H}_2 O$	15	500	100	5	0.638	0.184	7.506	0.048	0.8818
1		į		Nylon 11					
Air	20	500	100	5	1.154	0.184	9.639	0.049	0.9578
N_2	20	500	100	Ð	1.022	0.141	9.433	0.037	0.9738
After 3 h under N_2	20	500	100	S	1.047	0.122	9.722	0.032	0.9794
Air + 20 torr $H_2 O$	15	500	100	5	0.938	0.138	9.095	0.035	0.9443
$N_2 + 20 \text{ torr H}_2 O$	20	500	100	5	1.053	0.136	9.624	0.036	0.9696
				Polysulfone					
Air	20	500	100	5	1.164	0.057	11.123	0.051	0.9941
N_2	20	500	100	5	1.193	0.052	11.412	0.014	0.993
After 3 h under N_2	20	500	100	5	1.244	0.041	11.835	0.011	0.9971
Air + 20 torr water	20	500	100	5	1.091	0.037	11.375	0.01	0.9964
$N_2 + 20$ torr water	20	500	100	5	1.297	0.056	11.711	0.015	0.9949
			Experime	nts repeated afte	r 30 days		-		
Air	20	500	25	5	1.132	0.036	10.384	600.0	0.992
\mathbf{N}_2	20	500	25	5	1.162	0.037	10.650	0.00	0.9912
$N_2 + 20 \text{ torr } H_2 O$	20	500	25	5	1.160	0.031	10.756	0.008	0.9935
$w_2 + z_0 w_1$ water for 3 h	20	500	25	2	1.232	0.043	10.665	0.011	0.9899

1 -TABLE V on Charge-Berr and Humidity

SLOW LUMINESCENCE EMISSION

1267

Polymer $T (^{\circ} C)$ From interval (s) Polymer $T (^{\circ} C)$ From 70 Polysulfone 6 20 500 Nylon 11 25 20 500 Mydroxypropylcellulose 6 20 500	Time interval (s) Backgrour						-
Polymet $T (^{\circ} C)$ From To Polysulfone 6 20 500 Polysulfone 6 20 500 Nylon 11 25 20 500 Hydroxypropylcellulose 6 20 500		pr	Variables f	ütted to equ	ation $\log(I \cdot I)$	Δt) = log A –	$m \log(t/\Delta t)$
Polysulfone 6 20 500 25 20 600 600 25 20 600 600 Nylon 11 6 20 500 100 11 25 30 600 100 11 25 30 600 100 11 26 20 500 100 11 6 20 500 100 11 6 20 500 100 11 6 20 500	C) From 10 pnocous	Δt (s)	m	mq	$\ln A$	$p \ln A$	r^2
25 20 600 Alon 11 40 20 500 Nylon 11 6 20 500 25 30 600 40 20 Hydroxypropylcellulose 6 20 500	20 500 50	5	1.10	0.05	10.565	0.012	0.9895
40 20 500 Nylon 11 6 20 500 25 30 600 600 Hydroxypropylcellulose 6 20 500	20 600 50	5	1.22	0.08	10.455	0.020	0.9866
Nylon 11 6 20 500 25 30 600 40 20 500 Hydroxypropylcellulose 6 20 500	0 20 500 50	5	1.17	0.06	10.475	0.016	0.9904
25 30 600 40 20 500 Hydroxypropylcellulose 6 20 500	500 500 50	5	0.887	0.07	8.996	0.019	0.9836
40 20 500 Hydroxypropylcellulose 6 20 500	i 30 600 50	5	1.00	0.10	9.41	0.02	0.9624
Hydroxypropylcellulose 6 20 500	0 20 500 50	5	0.94	0.07	9.317	0.018	0.984
	500 500 500 50	5	0.83	0.10	8.45	0.026	0.9433
25 25 600	5 25 600 50	5	0.94	0.14	8.605	0.035	0.9044
40 20 500	20 500 50	5	0.867	0.1	8.585	0.025	0.9757

MENDENHALL AND AGARWAL

1268

λ ^b	Filtered power (mW)	A	m	A_f/A_0
No filter	1.64	24477	1.09 ± 0.09	1.00
315	1.50	17154	1.00 ± 0.10	0.70
405	1.42	10615	0.96 ± 0.14	0.43
490	1.36	4359	0.90 ± 0.22	0.18
590	1.32	2565	0.91 ± 0.11	0.11

TABLE VII Excitation of Nylon 11 through Cutoff Filters^a

 $^{\mathrm{a}}\Delta t = 5 \mathrm{ s.}$

^b50% transmittance value (nm)

TABLE VIII
Emission of Nylon 11 through Cutoff Filter ^{a, b}

			A /A
Λ°	A	191	A_{f}/A_{0}
No filter	24477	1.09 ± 0.09	1.00
315	22027	1.22 ± 0.15	0.90
405	20130	1.10 ± 0.13	0.82
490	13100	0.98 ± 0.12	0.54
590	2600	0.91 ± 0.11	0.11

^aIncident power 1.66 mW (water filter only).

 $^{\mathrm{b}}\Delta t = 5 \mathrm{s}.$

^c50% transmittance value (nm).

Nylon 12	Time interval (s)		Background						
	From	То	photons	Δt (s)	m	pm	$\ln A$	$p \ln A$	r^2
Nylon 11 before extraction	15	600	25	5	0.93	0.05	9.22	0.12	0.9753
Nylon 11 after extraction	15	600	25	5	0.91	0.05	9.13	0.12	0.9713
Polysulfone before extraction	15	600	50	5	1.22	0.07	10.45	0.02	0.9879
Polysulfone after extraction ^b	15	600	50	5	1.16	0.05	10.77	0.13	0.99

TABLE IX Effect of Extraction^a on DEL from Nylon 11 and Polysulfone

^aRefluxed with stirring for 1 h with a solution of 1:1 dichloromethane-isopropanol.

^bExtracted polysulfone compression-molded to give a plaque.

than ours, the sensitivity of our apparatus is indicated by the observation of measurable DEL an hour after the original 10 s irradiation of this polymer.

DISCUSSION

Decay Kinetics. The hyperbolic decay curves from the polymer samples distinguish them from simple fluorescence or phosphorescence emission, although the actual DEL from the short-lived excited states may correspond to one of the latter. The exponential terms (m) in our experiments are in the same range as those found in other systems. Debye and Edwards, for instance, obtained values of m between 0.83 and 1.61 in UV-irradiated p-toluidine in frozen glasses.² The values for many of our polymers are close enough to unity

1270 MENDENHALL AND AGARWAL

that the reciprocal formula applied earlier¹ would be satisfactory, although during initial attempts to use it in this study we found that a more general equation with an adjustable exponential term was preferable.

Stochastic models to account for the time dependence of hole-cation recombination processes have been advanced by a number of investigators recently.⁶⁻⁸ For instance, Stolzenberg et al.⁶ used a Monte Carlo simulation of geminate recombination with site hopping between i and j described by jump rates of

$$\begin{split} \nu_{ij} &= \nu_0 e^{-2\gamma |r_{ij}|} e^{-(\epsilon_j - \epsilon_j)/kT}, \qquad \epsilon_j > \epsilon_i \\ \nu_{ij} &= \nu_0 e^{-2\gamma |r_{ij}|}, \qquad \epsilon_j < \epsilon_i \end{split}$$

With one particular set of parameters γ (wave function overlap) and ν_0 , the simulated rate of electron-hole recombination followed a power function with m = 1.13, which is in the range of the exponential terms found in our study.

The use of short-wavelength excitation to produce a slowly decaying emission has been used previously by ourselves¹⁰ and others,¹¹ and ascribed without further evidence to *radical* recombination luminescence from an initially formed population of peroxyl radicals:

$$\mathbf{P} \xrightarrow{h\nu} 2\mathbf{R} \cdot \xrightarrow{\mathbf{O}_2} 2\mathbf{R}\mathbf{O}_2 \cdot \tag{3}$$

$$2\mathrm{RO}_2 \cdot \xrightarrow{k_t} \to \mathrm{nonradical \ products} + h\nu' \tag{4}$$

$$(P = precursor, R = alkyl)$$

For a homogeneous initial distribution of radicals, the above mechanism leads to the prediction¹⁰ of a decay of the light intensity (I) according to the equation

$$1/I^{1/2} - 1/I_0^{1/2} = 2k_t t/f \tag{5}$$

where f is the efficiency factor and I_0 is the initial intensity. For large I_0 , the equation reduces to

$$I = (f^{2}/4k_{d}^{2})t^{-2} = At^{-2}$$
(6)

In the presence of a background level of free-radical initiation giving rise to a nonstimulated luminescence I_{∞} , the equation takes on a more complicated form:

$$\ln\left[\left(I_{\infty}^{1/2} + I^{1/2}\right) / \left(I^{1/2} - I_{\infty}^{1/2}\right)\right] = 4k_{i} [\operatorname{In}] k_{i} t / f$$
$$-\ln\left[\left(I_{0}^{1/2} - I_{\infty}^{1/2}\right) / \left(I_{\infty}^{1/2} + I_{0}^{1/2}\right)\right] \quad (7)$$

where I_{∞} is the "thermal" chemiluminescence produced by the background initiation rate $2k_i$ [In].

In our samples all but one of the exponential terms was below 1.2, which precludes the simple formula (4), and application of eq. (5) to several examples gave substantially worse fits to the data.

The temperature-independence of the parameters for the DE (Table VI) is an expected characteristic of a process involving diffusion of a small particle such as an electron, although we would expect *a priori* that significant differences might be found in polymers in temperature ranges where they undergo phase transitions, or above a critical temperature for electron transport as discussed by Hamill.⁴ The apparatus was designed only for a general survey, however, and we have not made a systematic study of this possibility over an extended range of temperature.

Bässler has predicted⁶ a temperature dependence of the recombination rate proportional to $e^{-(T_0/T)^2}$, where T_0 is the width of the assumed Gaussian distribution of trapping sites. The absence of a temperature dependence of the decay parameters in the experiments described in Table VI would therefore suggest relatively large values of T_0 .

We anticipated that water might plasticize the polar polymers and change the DEL decay characteristics, but the data in Table V do not show very pronounced difference between samples in humid vs. dry atmospheres. The decay characteristics in nitrogen vs. oxygen also do not show much change, although oxygen is an effective quencher for triplet states in polymers,¹² and can scavenge electrons to form superoxide ion with different diffusional characteristics. These results are consistent with trapping of photoejected electrons in relatively rigid or at least inaccessible sites of the polymer, followed by hopping between lattice sites in competition with slow recombination with the original cationic center as described.⁶

The emission from our samples in all cases was relatively weak, and the design of our apparatus with a wide collection area was necessary to measure the emission with satisfactory precision. The weakness of the signal, however, is partly a simple consequence of the slow decay. Although it is not possible to characterize the DEL fully because the concentrations and quantum yields of the emitting species are not known, we can estimate roughly from the data of Tables III, VII, and VIII that for nylon 11, about 5×10^{-7} of the incident photons in the active region of the spectrum are emitted as DEL. Since not all of the incident energy is absorbed by the sample, the quantum yield is probably larger than this value.

Nature of the Chromophore. We had expected that irradiation in the short end of the visible spectrum would be effective, but it was a little surprising that light even with wavelengths beyond 500 nm (< 57 kcal/mol) was able to give an easily measurable luminescence (Table VII). Several pieces of evidence indicate that adventitious chromophores are responsible for this DEL. First, except for poly(*p*-phenylene sulfide) and PVK, none of the polymers contain chromophoric groups in their normal repeating units which absorb appreciably in the visible region. Second, many polymers of similar structure appear in both the luminescing and nonluminescing categories (Tables I and II). In one instance (polycarbonate) the material from one source showed DEL but a sample from a different source did not. Third, the absence of DEL from polycaprolactam, in contrast to other polyamides, may be associated with its commercial synthesis by a ring opening rather than a

high-temperature condensation process. Finally, we have been able to stimulate long-lived luminescence (average of 5 decays: $\ln A = 7.61 \pm 0.2$, $m = 1.06 \pm 0.08$) in nylon 6 with a typical hyperbolic decay curve by addition of $7.9 \times 10^{-4}\%$ of a dibenzofuran dye which is known to complex strongly with proteins.

Several authors^{13,14} have proposed that photochemical damage to polymers is caused by adventitious chromophores including peroxidic and catalyst residues, polyaromatic hydrocarbons, and titanium compounds. While the connection between the chromophores responsible for degradation and the ones causing the DEL is not established, the latter cannot be aromatic hydrocarbons in nylon 11 and in the polysulfone, because we could not extract them with organic solvents. Peroxidic residues alone do not appear to be the chromophores because they are transparent in the visible region. It is unlikely that the same, added impurity would be responsible for the DEL in all of the samples we examined, since egg albumin and nylon 6/9, for instance, have obviously divergent origins, even though their hyperbolic decay parameters are quite similar.

Evidence that the chromophores in the nylon series are introduced by high-temperature processing was obtained by an experiment in which polycaprolactum was examined for DEL in the usual way after heating in air at 100 °C for different times. A well-developed hyperbolic curve was apparent

Fig. 3. DEL from poly(ϵ -caprolactam) at 25°C after heating at 100°C for the indicated times. The plotting is carried out as for Figure 2.

after 16 h, although the sample initially showed little luminescence (Fig. 3). A very slight discoloration was apparent in this sample after the heating period, when it was placed next to unheated material for comparison.

Electron Spin Resonance Experiment. The absence of a significant signal on irradiation of nylon 11 in an ESR cavity suggests that the number of unpaired spins is relatively small. From the data on nylon 11 in Table I and the integrated form of the Debye–Edwards equation, we estimate that the total number of photons emitted in the DEL experiment with this polymer was about 10^{9} . Since the sample size in the ESR experiment was much smaller, it is not surprising if the free spins present were below the ESR detection limit of about 10^{13} , provided that the quantum yield of emission from the chromophore was above about 10^{-4} .

This work has been generously supported by 3M Co. and by a fellowship to H. K. Agarwal from Himont U.S.A., Inc.

APPENDIX

Cutoff Filters. For a decay of the form $I = At^{-m}$, interposing an optical filter between the sample and the detector will reduce the observed instantaneous intensity by a fraction f to a new value I':

$$I' = \int I = \int dhv/dt = \int At^{-m}$$
(8)

Evaluation of the decay curve obtained with the filter in place will give a new preexponential factor A' = fA; hence f = A'/A (Table VIII). The value of the slope of the log-log plot remains unchanged.

Similarly, self-absorption of emitted light from a sample, use of a detector with different sensitivity, or changing the distance from the sample to the detector will change the evaluated A factor but not m.

Normalization Correction. The data from our experiments were collected as the total photons during successive intervals Δt vs. the number of time intervals. In terms of the Debye expression given above, what we actually evaluated in the logarithmic transform of the raw data is therefore

$$\ln(I \cdot \Delta t) = \ln A' - m' \ln(t/\Delta t)$$
⁽⁹⁾

where I is approximated as an average intensity over the time interval. By comparison of this equation with the normalized form $\ln I = \ln A - m \ln t$, with I in counts/s and t in s, it can be shown that

$$m = m' \tag{10}$$

$$\ln A = \ln A' + (m' - 1) \ln \Delta t \tag{11}$$

Since the magnitude of A has no special significance, and is subject to proportionate increases due to the geometry of the apparatus and PMT response as well, the directly evaluated preexponential terms (i.e., A') are given in Table I without correction. The correction in any case is a small one and vanishes for m = 1.

References

- 1. G. D. Mendenhall, 174th American Chemical Society Meeting, Chicago, August 1977.
- 2. P. Debye and J. O. Edwards, J. Chem. Phys., 20, 236 (1952).

3. J. E. Pickett, in *Polymer Stabilization and Degradation*, P. P. Klemchuk, ed., ACS Symposium Series 280, Am. Chem. Soc. Washington, DC, 1985, p. 313.

MENDENHALL AND AGARWAL

4. W. H. Hamill, J. Phys. Chem., 82, 2073 (1978).

- 5. F. Kieffer, C. Lapersonne-Meyer, and J. Rigand, Int. J. Radiat. Phys. Chem., 6, 79 (174).
- 6. F. Stolzenberg, B. Ries, and H. Bässler, Chem. Phys. Lett., 116, 73 (1985).
- 7. B. Ries, G. Schönherr, H. Bässler, and M. Silver, Phil. Mag., B49, 259 (1984).

8. R. Richert, B. Ries, and H. Bässler, Phil. Mag., B49, 55 (1984).

9. C. A. Ogle, S. W. Martin, M. P. Dziobak, M. W. Urban, and G. D. Mendenhall, J. Org. Chem., 48, 3728 (1983).

10. G. D. Mendenhall, Ang. Chem. Int. Ed., 16, 225-32 (1977).

11. G. A. George, Dev. Polym. Degrad., 3, 173 (1981).

12. G. Oster, N. Geacintov, and A. U. Khan, Nature, 196, 1089 (1962).

13. D. J. Carlsson and D. M. Wiles, J. Macromol. Sci., Rev. Macromol. Chem., C14, 65 (1976).

14. J. S. Hargreaves and D. Phillips, J. Polym. Sci., Polym. Chem. Ed., 17, 1711 (1979).

Received May 28, 1986 Accepted July 14, 1986